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An accurate two-stream moment method for kinetic boundary 
layer problems of linear kinetic equations 

A J Kainz and U M Titulaer 
lnstitut fur Theoretische Physik, Johannes Kepler Universitit Linz, A-4040 Linz, Austria 

Received 4 October 1991 

Abstract. We develop a method for solving I D  kinetic boundary layer problems for linear 
equations that uses separate Hermite moment expansions in the velocity variable for 
particles moving towards and away from a plane wall. This so-called two-stream method 
is tested for two especially simple kinetic equations, the linear BGK equation and the 
Klein-Kramers equation, the kinetic equation for Brownian particles. For both of these 
equations, extensive exact information is available for two simple boundary layer problems, 
the Milne and the albedo problem. A comparison of these exact results with those obtained 
with our version of the two-stream moment method shows that the accuracy obtainable 
by our method exceeds that of earlier methods by several orden of magnitude. In particular. 
the method allows us to obtain accurate results not only for the moments of the distribution 
function, but also for the distribution function itself. Small discrepancies remain close to 
the wall for small values ofthe velocity: the distribution function at the wall has a singularity 
at velocity zero, which can never be reproduced exactly by an approximation by piecewise 
analytic functions. For the albedo problem, in which particles are injected into the system 
at the wall with a given velocity distribution, we obtain reasonable rewlts forthe distribution 
of returning particles, even for input distributions for which the expansion in Hermite 
functions diverges or converges extremely poorly. 

1. Introduction and survey 

In the theory of kinetic boundary layers there are two classes of problems for which 
extensive exact analytic information is available. They involve the Klein-Kramers 
equation [i,  ij and the iinear Bnatnagar-Gross-Krook (BGK) equation [3,4j for a 
half-infinite space bounded by a plane wall that absorbs all or some of the particles 
that collide with it. The BGK case is solvable by quadratures [4,5]; for the Klein- 
Kramers case a solution involving infinite series, with closed form expressions for 
several quantities of interest, was given a few years ago by Marshall and Watson [ 6 ] .  
The two problems are therefore well suited for testing approximate schemes for solving 
kinetic boundary layer problems. 

Both the exact solutions and many approximate schemes involve a decomposition 
of the required solution in terms of special solutions: the Chapman-Enskog solutions, 
which vary slowly in space, and boundary layer eigensolutions, which decay in space 
on the scale of the mean free path (or the velocity persistence length in the Klein- 
Kramers case). In both cases these special solutions are known exactly. In the Klein- 
Kramers case the spectrum of decay lengths is discrete [7]; in the BGK case the spectrum 
is continuous and the associated eigenfunctions are distributions [8]. In the Klein- 
Kramers case, the expansion of the required solution in terms of the special solutions 
converges very slowly [9,10], hence it is not well suited to obtain accurate numerical 
results. Better results, and in particular faster convergence, are obtained [ I l ,  121 by 
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first expanding the solution in terms of the Hermite polynomials in the velocity variable, 
truncating the resulting system of coupled ordinary differential equations, and expand- 
ing in terms of the special solutions of the truncated system. This method yields accurate 
results for moments of the distribution function, but the distribution function for the 
particles, especially at the wall, is still approximated rather poorly. This is not too 
surprising, since the functions used in the expansion are analytic ones, whereas the 
distribution function at the wall is known to be non-analytic, both in the Klein-Kramers 

A treatment that gives accurate results already in low truncation orders was given 
by Gross et al [16] for the BGK and related models, and by Razi Naqvi et al [17], who 
generalized earlier work by Hams [18], for the Klein-Kramers case. In this approach, 
separate expansions are used for particles moving towards and away from the wall; 
hence the method is called the two-stream method. This ansatz naturally allows for 
non-analytic behaviour at the wall, though not precisely of the required type, at the 
price of also introducing singularities away from the wall, where the distribution 
function should be analytic [14,15]. Thus it appears worthwhile to explore the 
behaviour of this approximation as the truncation order is increased. This is not easily 
done using the formalisms of [16] and [17]. The former uses a procedure that rapidly 
becomes numerically unsuitable as the truncation order is increased, whereas the 
second requires a fair amount of analytical labour for each order of truncation 
separately. Therefore, we developed a variant of the formalism of [16] in which the 
analytical preparations can be performed once and for all for an arbitrary truncation 
order. As a consequence, the order of truncation is limited merely by the accuracy 
obtainable in the numerical implementation of our algorithm. 

In section 2 we present the kinetic equations treated in this paper, expand them 
in terms of half-range Hermite polynomials, and discuss some properties of this 
non-orthogonal system of basis functions. In section 3 we consider truncated versions 
of the system of coupled differential equations for the expansion coefficients, and the 
special solutions (Chapman-Enskog and boundary layer eigenfunctions) of this trun- 
cated set. We then give the procedure to be used to obtain the solutions for two 
especially simple stationary boundary layer problems, the stationary Milne problem 
(both for complete and for partial absorption at the wall) and the stationary albedo 
prooirm lor Injection ui pariicrra ai inc wail wiin a iiiriiirai U L ~ L I ~ U U L ~ U L ~  ar a I C ~ L I ~ G I ~ L U ~ S  

different from that prevailing far from the wall. 
The subsequent sections are devoted to a presentation of our results. In section 4 

we present the results for the Milne problem with complete absorption. For both 
equations we obtain extremely accurate results for the moments, in particular for the 
so-called Milne extrapolation length, and very good results for the distribution function 
at the wall as well. Special attention is paid to the behaviour of the distribution function 
near the non-analytic point, and comparisons are made with known analytic results 
[14,15]. Sections 5 and 6 are devoted to results for the Milne problem with partial 
specular reflection and the albedo problem, respectively. The final section contains a 
few concluding remarks, mainly on possible applications to more general problems. 

A J Kainz and U M Titulaer 
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c..:-:....- . P _ . . . l . .  ... L. . l . . . :LL.  LL.--, >:-.:L...: ---. ~ .^__ ~ - "  .___" 

2. iiasic equaiions 

The equations studied in this paper are of the form 
d 

v--f(u, x) = w-(u,  x)  ax 
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where f (u, x) is the distribution function for the velocity U and the position x of the 
particle and %is  a linear collision operator acting on U only; the left-hand side describes 
the free flow of the particles. The form (2.1) is purely ID; its relevance for 3~ problems 
in a half-space bounded by a plane wall will be discussed briefly in section 7. Moreover, 
( 2 . 1 )  as written applies only to stationary situations. Although the Laplace transform 
of the corresponding time-dependent equation also takes the form (2.1), with a slightly 
modified Q [ 4 , 9 ] ,  the inversion of the Laplace transform and the treatment of the 
initial conditions involve additional problems that exceed the scope of the present 
paper. 

We study two examples for e: the Klein-Kramers operator Q, and the Em-operator 
OB, which in suitable dimensionless units take the form 

(2 .2a)  

(2.2b) 

where &(U) = (2a)-'" exp[-u2/2] is the Maxwell equilibrium distribution in scaled 
units. The operators Q, are self-adjoint with respect to the scalar product 

U d- I duf*(u)g(u)&(u)-'. (2.3) 

The eigenfunctions of both QK and (eB may be chosen as 

+"(U) = d J O ( ~ ) + . ( U )  (2.4a) 

(2 .46)  

where H,(y) is the nth Hermite polynomial. (Note that our normalization of the d,(u) 
differs from that used in earlier work [12,19].) The corresponding eigenvalues are 

= -n  E B " = S n O - l .  (2.5) 

The eigenfunctions are connected by the ladder operators 

a+ = -a/au a- = v + a / d u  (2.6) 

which satisfy the relations 

(2.7) "-1 - E A  
U Wn - v n w - ,  . ii+& = v m  @"+, 

We shall expand the solution to be constructed in terms of the half-range functions: 

with 

The system of functions 4"" is not orthonormal; we have instead 

(&, hi)= a E  =S,,a,, (2.10a) 
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with a", given by 

G m  = &,I2 for n + m even 

(-1)"+"(2n-1)!! 
(2m)!!(2m - 2 n + l )  a2n,2m+l = 

(2.106) 

(2.lOc) 

a2m+l.2n = a2n.2m+l. (2.10d) 
The particle and current density contained in (2.8) are given by 

, 
n(x)= d u f ( ~ , x ) = ~ a ~ . [ B ~ ( x ) + ( - l ) ~ B ~ ( x ) ]  (2.11a) 

j (x )  = duuf(u, x)  = E  a, . [B~(x)-(- l )"E,(x)] .  (2 . l lb)  

Taking matrix elements of (2.1) with respect to the set of functions (2.9) we obtain 

J n 

1 n 

the set of equations 

(2.12) 

with § a symmetric matrix with elements 

5;; =(+np14+mi)=m a'&+,+& a% (2.13) 

that are easily calculated using (2.7) and (2.1Oa). The matrix 'C corresponding to ZB 
is also readily found from (2.26): 

B C., - _  - -aR,+a;;a&. (2.14) 

The evaluation of the matrix KC corresponding to VK requires special care due to the 
action of the differentiations on the @-functions: 

Z K + n r ( u )  = ( - n ) + . , ( ~ ) + 2 u ~ S ( ~ ) + ~ ( ~ ) + u + . ( ~ ) S ' ( ~ ) .  (2.15) 

To evaluate integrals involving this distribution we use the rules 

[nmdua(u)g(u) =&a) (2.16a) 

Ifm du S ' ( u ) g ( u )  = -$g'(O) -g (O)S(O)  (2.166) 

which can be obtained by formal integration by parts or by substitution of a representa- 
tion of the &function. The corresponding expressions for integrals from -m to 0 are 
found by a transformation of variables. Using these rules, (2.71, and the known 
properties of the Hennite polynomials, we obtain 

f "  

(2.17) 

Both (2.14) and (2.17) are symmetric matrices; for (2.17) this can be seen using (2.10). 
Moreover they obey the relation 

T 
K C z =  - m o ~ ; + - ( m - n ) a , , - u r G  +,,(0)+,(0)8(0). 

2 

IC;;=O for all m and T 
(I 

(2.18) 

which expresses conservation of current [&, is a left eigenfunction of W with eigenvalue 
zero with respect to the scalar product (2.3)]. 
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The occurrence of 6(0) contributions looks disturbing at first sight. Such contribu- 
tions can be avoided if one uses a mixed representation 

In this representation all matrix elements are regular. In fact, the results shown in 
some of the figures of [ 141 were obtained using such a mixed representation. Meanwhile, 
we found that the formalism just presented not only yields symmetrical matrices, but 
gives much more accurate numerical results as well. We therefore shall not present 
the formalism based on (2.19) in any more detail, but occasionally mention the results 
obtained by it for purposes of comparison. 

In the formalism of [16], the expansion (2.8) is replaced by an expansion in terms 
of an orthogonal set of functions, obtained from the o"q5,, (or from the &) by means 
of the Gram-Schmidt orthonormalization procedure. This has the advantage of leading 
to simpler expressions for § and 'C; the algorithm for the recursive calculation of the 
orthogonal functions quickly becomes numerically intractable, however. This also 
means that the construction of KC, and of other collision operators with explicitly 
known eigenfunctions, may become awkward. Since our formalism and that of [16] 
are in principle equivalent, the choice between them becomes one of numerical (and 
algebraic) convenience; in view of the excellent convergence properties of our method, 
we did not carry out extensive ca!cu!ations using the forma!ism of [W!: 

3. Special solutions and bounday layer problems 

In this section we consider the truncated version of (2.12). obtained by restricting the 
indices n and m to 0 S n, m S N - 1 t. The truncated version of C, like (2.2), is negative 
semidefinite with a single eigenfunction belonging to A =O. The truncated version of 
§ has only non-zero semisimple eigenvalues, in pairs of opposite sign. We shall use 
the same notation as in (2.12) for the truncated quantities as long as there is no danger 
of confusion; if we wish to consider the dependence on N, an upper index (N) will 
be added to the quantity under consideration. We are interested in particular in solutions 
of the form 

The b(,,, i.e. the vectors with components bz(,,, obey the generalized eigenvalue 
equation 

or, since § is invertible, at least in its truncated form$., 

S' . C . b(kl= -hkb(k , .  (3 .3)  
With the exception of A, = 0, all eigenvalues of (3.3) are semisimple and they occur 
in pairs of opposite sign. For A = 0 we have the Jordan case: the two vectors 

t In a formalism based on (2.19) the corresponding restriction would be O S m S 2 N - I ; O S n = = N - I .  
%Though § is invertible for any finite N, half of its eigenvalues approach zero with increasing N, due to 
the overcompleteness of the 4"-. The same holds far C, but the combination S-' . C slays well behaved 
with increasing N. The mentioned property of § restricts us to values of N smaller than 30; then, the lowest 
eigenvalues became indistinguishable from zero numerically. even in extended precision calculations. 
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obey the relations 

A J Kainz and U M T i t h e r  

C . b(ol = 0 C . b ( l ~ = § . b < o l .  (3.5) 
We shall arrange the other b ( k J  in ascending order of the IAcrll ,  in such a way that the 
b(21) and b(21+l) belong to positive and negative A, respectively. From the symmetry of 
C the relation 

(Ak-A!)b!k!.§ .b!!)=O (k. I f O ,  1) (3.6) 

follows. Hence, we may normalize the bCl1 according to 

b(k) ‘ § ’ b(ij = Ski sgn(Ak). (3 .7a )  

The quantity on the left in (3 .7a )  also vanishes when k or I, but not both, take the 
value 0 or 1. The remaining values are 

(3 .76)  

For the Klein-Kramers case the problem (3 .3)  just sketched cannot yet be solved, 
due to the occurrence of the S(0). These delta-functions result from the action of the 
operator J2/Ju2 on the 0 functions in the &,,(U). They may thus be eliminated by a 
reguiarization of this operator. if we repiace the Fourier transform -4’ of a’jau? by 
-min(q*,q;.,), the S(0) is replaced by K1qmar  (apart from some additional 
modifications that vanish for qmar+m). We therefore decided to replace S(0) by a 
sufficiently large positive numbert. This number should in any case be larger than the 
largest wavenumber in the Fourier transform off(u,  x) with respect to U that we may 
expect to be reproduced faithfully in our approximation; hence the lower hound on 
‘S(0)’ should increase with N, as we also found heuristically. In practice, lo3 turns 
out to be sufficiently large for all values of N considered. For still larger choices, most 
results do not change appreciably any more (though very large choices cause numerical 
difficulties in the calculation of eigenvalues and eigenvectors); see, however, the remarks 
at the end of section 5.  As a test we considered the eigenvalues AiNJ ,  which for large 
N must approach the exact eigenvalues [ 7 ] :  

(3.8) IN/ ,7 iim *;;) = & iim A;;;,= -4k. 
N-tm N-m 

The corresponding eigenfunctions 
N- l  

“ = O  
G i N J ( u )  = 1 ( b ~ ~ ~ ) ~ “ + ( u ) + b ~ ~ ~ J ~ ” - ( u ) )  (3 .9)  

must approach the known Pagani eigenfunctions [ 7 ]  for N + m, in particular, they 
must become continuous at U = 0; for the jump Ai” at U = 0 we thus require 

(3.10) 

In table 1 we present some A{E1’ and AiN,”’ for N = 25 and ‘S(0)’ equal to 10’ and IO6. 
For iow k, ihe iimiis (3.S) and (5.iOj are aiready approached quiie cioseiy, independent 

t As an alternative regularization method we modified ‘ZK by replacing all eigenvalues of magnitude larger 
than M by - M ,  for some M >> N. This required more computational effort, but led to similar. though slightly 
inferior, numerical results. 
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Table 1. The square of the decay length A:,, for some of the approximate boundary layer 
eigenfunctions obtained from the set of coupled moment equations for the Klein-Kramers 
case, truncated at N=25, using (hyb) the hybrid formalism based on (2.19). (2, E3) the 
consistent two-stream method with ‘S(O)’= I@ and (2, E6) the same method with ‘S(O)’= 
lo6. The last column gives the jump A2” in the velocity distribution at u = O ,  calculated 
with ‘S(O)’=lO’. The corresponding values for ‘S(O)’= 10‘ (not shown) are somewhat 
smaller, but of the same orders of magnitude. 

“ 
1 
2 
3 
5 

10 
i 5  
20 
22 
23 
24 

I + 2  x IO-3‘ 
2 - z x  10-26 
3 + 5  x 10-2’ 
5 + 7 ~  10-14 

10.0614 
0.2466 x iiY 
0.2117X10’ 

0.9424 x lo4 
0.5603 x lo6 

o.1501 x 10‘ 

1 + 2 x 
2+ 1 x 10-2” 
3 + 2 x  IO-“ 
5 + 9  x lo-’ 
12.1714 
O.Bi6jxiiY 
0.9195 x lo‘ 
0.7231 x IO6 
0 . 3 7 1 1 ~ 1 0 ~  
0.9342 x IO” 

1 + 4 x lo-’’ 
2+ I x 10-’0 
3+2 x 1 0 ~  
5 + 9 x IO-’ 
12.1717 ””.,- ...> 
u.II101x1u- 

0.9205 x IO“ 
0.7259 x IO6 
0 . 3 7 5 6 ~  10’ 
0.9576x LO” 

A2” 

-0.469 X 

0.424 X IO-” 
0 . 4 5 8 ~  IO-“ 
0.238X 

- 0 . 1 3 2 ~  lo-’ 

-0.473 X 10.” 
-0.265 x 10.’ 

O.124X1O0 
0.141 X 10’ 

- ~ .. .. . --3 
“.,41,7 1” 

of the choice of ‘S(0)’. For the BGK case, the spectrum of the operator in (3.3) should 
become continuous (apart from the discrete eigenvalue zero), hence there is no special 
significance to be attached to limits of the A i N )  and AL”. Nevertheless, here also the 
ALN) become small for kcc N. 

A solution of (2.1) in the half-space x > 0 that increases no faster than linearly 
with increasing x can be approximated by 
&NI(.. .,\-ANI.A ( . ~ i L A l N l r A  /..\-...d. /..I1 

J I u , * I - u O  V O I W I  ’ u I  LVl\” I  * Y O \ ” I J  

N - l  N-I 

k-l n = 0  
+ C d%’ exp[-A$!i?xl 1 [b:j,”*))~.+(u)+bnl,”*))+.-(~)l. (3.11) 

The form of the term containing d;” follows from (3.4) and (3.5) and is familiar from 
earlier work [9,10]. In the limit N + m  the solution (3.11) is determined uniquely 
[6,20] by the specification of either do or d ,  and the additional requirement 

f (u,O)=g(u) for u > O  (3.12) 

with a given function g(u). Two well known solutions are the Milne solution f M: 
d y = - l  = 0 (3.13) 

and the albedo solution for a particular function gA(u)  
r A - n  _ I _ .  i- - ,.., / *  * ” ,  
U I  =” & ! l U l =  ~ A \ U J .  (J.I‘tI 

The condition (3.12) can be satisfied approximately by requiring that the expression 

f ~ N ’ ( ~ , O ) = d ~ N ’ + o + ( u ) + d ~ N ) + i + ( ~ ) +  C d $ r )  C b X l + n + ( u )  (3.15) 

has the same first N half-range moments as g ( u ) :  

,( duf!N’(u,O)+n+(u) = dug(u)+n+(u)= g. (3.16) 

with the $.+ defined in analogy with ( 2 . 4 a )  and (2.9). These conditions suffice to 
determine the N coefficients d i r ’  for 0 s  k < N. In view of the overcompleteness of 

N - l  N-l  

k=L “ = O  

for 0s n < N 
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the I)”+ in the limit N + m ,  the prescription (3.16) is not the only one which yields a 
sequence off“’ that fulfils (3.12) for N + m .  However, it appears to be the natural 
analogue of the Marshak prescriptions [21] for full-range expansions, which for the 
same reason is also not unique. Moreover, as we shall see in the subsequent sections, 
the recipe (3.16) is practicable and it yields accurate numerical results. 

A J Kainz and U M Xtulaer 

4. The Milne problem for an absorbing wall 

In the classical Milne problem, defined by (3.13), a constant particle current of unit 
strength Bows towards an absorbing wall at x = 0. Such a situation may occur when 
the wall binds the particles chemically or when it is composed of a solid (or covered 
by aliquid layer) in contact with its supersaturated vapour. The solution of type (3.11) 
is obtained by putting d‘,”= -1  for all N and requiring the coefficient of each +.+(U) 
in (3.15) to vanish separately. This programme was carried out for N G 30, for the 
BOK and Klein-Kramers collision operators, with ‘S(O)’= lo’ for the latter case. In 
figure 1 we show the resulting distributionfr’(u, 0) at the wall for the BGK case. Also 
shown is the result of an expansion in full-range Hermite polynomials [ 111 with N = 50 
(same number of parameters) and the result of the exact solution [4,15]. An asymptotic 
evz!uatinn af &e 3c-g res..!! aro..nd = 8 yields. [!5j 

1 v l n u  0.72471 ... 
u+o(u21n2 U), Ji;; fMB( - U, 0) = - -- + 

Ji;; 27r 

We see that the jump in fMB at U = 0 is repfoduced extremely well; the very weak 
singularity of type U In U can of course not he reproduced completely by a piecewise 
analytic approximation, but the discrepancy is not visible in the figure. The magnitude 
of the discrepancy at U = O  can be seen from the tables presented later in this section. 
For the Klein-Kramers case results similar to those presented were already given in 
figure 2 of [14], though with two-stream results obtained by the formalism based on 
(2.19). The version of the two-stream method given in this paper yields even better 
agreement with the exact asymptotic expressions for small U; for further details we 
refer to the tables to he discussed presently. 

2-strs.am H 1 -stream 

t 
- 2  - 1  0 1 2 

Figure 1. The Milne solution fM(u.0) at the wall for the BOK case as obtained from the 
one-stream moment method with N =50 and from the two-stream method with N = 2 5 .  
The exact expression is indistinguishable from the latter result. 
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---.-.. rho-0.000 1 

- rho-0 (lim) 
.__._._...__.... _.__._. -.- 

0 1.57 3.14 

Figure 2. The Milne solution f M ( p  cos y, p sin y )  for the BOK case, in N = 28 approxima- 
tion, around the singularity U = x = 0 as a function of the angle y for various small p. The 
exad pJ0 limit is indicated for comparison. 

For several quantities characterizing the solution, accurate estimates can be obtained 
by evaluating the results for a number of truncation orders N and fitting the results 
q'"' to the formula 

q l N )  = q- fyN- ' .  (4.2) 

If a trend remains in the qm obtained by fitting different groups of q"', the procedure 
is repeated; this is roughly equivalent to adding more terms in (4.2). The existence of 
a formula of type (4.2) as an asymptotic expansion can be proved [lo, 141 for approxi- 
mations by finite series of exact boundary layer eigenfunctions; in the present context 
it should be considered a purely heuristic assumption. This procedure was carried out 
for the Milne extrapolation length 

xM = d y .  (4.3) 

xM is also the coordinate at which the extrapolated asymptotic density profile 

do fg(u, x)  =x+x, (4.4) 

where fz is the distribution function without its boundary layer components, becomes 
zero. For the Klein-Kramers case the value found for xg5) did not change by more 
than when the value for 'S(0)' was varied between 50 and lo8, in spite of the 
somewhat larger discrepancies seen for some quantities in table 1. Hence we shall 
restrict ourselves from now on to values calculated with 'S(0)' = 10'. We also estimated 
the particle density at the wall 

n"(0) = du f M( u, 0) J 
and the jump in the distribution function at U = x = 0 

AM = lim f "( - E ,  0). 
e 10 

In tables 2 and 3 we give the results obtained for these quantities, both for N = 30 
and by the (repeated) extrapolation procedure (4.2), for the BGK and Klein-Kramers 
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Table 2. The Milne length x M .  the density at the wall n,(O) and the velocity jump AM for 
the Milne solution in the BGK case as calculated: (Is)  by the one-stream method [12]; 
(2h) from the hybrid two-stream method based on (2.19); (2N) from thetwo-stream method 
in N=30 approximation; (2s) from the two-stream method with the repeated fit (4.2). 
which was also used to obtain the results (Is) and (Zh), and (ex) by numerical integration 
ofthe exact analytic solution [IS]. The quantity nM(0) in the (2N) approximation is found 
to be equal to unity up to the numerical round-off errors associated with the inversion of 
the matrix S;  this error increases from 3 x IO-'' for N =2 lo 4x IO-'' lor N = 30. A dash 
indicates that no fit was possible. Unless specified otherwise, the errors in fined quantities 
are at most one unit in the last specified digit. 

~ 

IS 1.437 1 1.000 - 
2h 1.437 111 0.9999 0.427 
2N 1.437 111 675 8.. . I 0.4007.. . 
2s 1.437 111 685 7 1 0.398 94 
ex 1.43711168576 ... 1 0.398 942 28 . . . 

Table 3. The same quantities as given in table 2 for the Klein-Kramers case. The additional 
row (ET) gives the result of approximations by finite linear combinations afexact eigenfunc- 
tions [9, IO]; the entries in the row (ex) are obtained in closed form from the exact solution, 
except n,(O), which was obtained from a slowly converging exact series expression [141. 

IS 1.46035 0.936 - 
Z!: !.460 352 5 0.035 : 0.008 
ZN 1.460 354 85 . . . 0.935 88.. . 0.0172. 
2s 1.460 354 50 0.936 11 - 
ex 1.460354508809 . . .  0.936 1145 ... 0 
ET 1.461 0.95T0.02 0.2+0.3 

cases, respectively. For comparison we also give the results obtained from the exact 
solutions [14, 151, from the formalism based on (2.19), from an expansion in full-range 
Hennite polynomials [ l l ]  and, in the Klein-Kramers case, from an approximation by 
finite linear combinations of exact boundary layer eigenfunctions [9,10]. The exact 
value for xM in the BCK case in our units is 

where F, is Dawson's integral 

&,(x) =exp[-x2] J ^ d f  exp[t2] 
0 

(4.76) 

The entry in table 2 was obtained by a new, accurate evaluation of the integrals in 
(4.7), since the literature values were too imprecise for assessing the accuracy of our 
formalism. In all comparative cases, only the extrapolated results are given. The results 
clearly show the improvement in numerical accuracy obtained, especially in the 
Klein-Kramers case, as we move ever further away from the exact eigenfunctions. 
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The BGK solution shows a particularly interesting singularity structure in the 
(U, x)-plane. As we approach the origin in this plane the limit obtained by asymptotic 
analysis of the exact solution [ 1 5 ]  is 

u , a a O  (4.8a) 1 
f ~ ( u , ( ~ u ) = - ( l - e - ~ ) + O ( u i n u )  Jr;; 

1 
f.”(-u, u u ) - - + ~ ( u  In U) U, (I a 0. Jr;; (4.8b) 

In figure 2 we show how this limit is approached by plotting f p ( p  cos 4, p sin 4) as 
a function of 4 for various p together with the limit (4.8) for PLO. We see that serious 
discrepancies occur only for p s 0.1. 

The method presented in this paper has one principal drawback: the approximations 
to the functions f “(U, x) are non-analytic not only at U = x = 0, where an actual 
non-analyticity occurs, but also everywhere along the line U =O. To assess the severity 
of this shortcoming we calculated the jump 

(4.9) 

for the BGK case, both for the main method described in this paper and for the variant 
based on (2.iSj. Tie resuits are shown in figure 3. Tie highesi decay iengihs occurring 
in these approximations were A = 80.1109 and A = 13.0905, respectively. We see that 
the regions in which serious discrepancies occur differ by an order of magnitude. 

“‘“1 

-0.2 I I 
0 0.5 1 1.5 2 

Figure 3. The jump Af’(x) at u=O, defined in (4.8), as a function of x for the Milne 
solution in the BGK case. In the exact solution, the quantity vanishes for all x # 0. The 
exact x = 0 value is denoted by a cross. 

5. The Milne problem with partial specular reflection 

When a fraction r of the particles reaching the wall are reflected specularly there, the 
boundary condition (3.13) should be replaced by 

d K = - l  f Y ( 0 , O )  = rf%s 0) for U > 0. (5.1) 
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For the Klein-Kramers case the solution around U = x = 0 has a particularly sharp 
singularity [13,14] 

f ? ( - u , o ) =  co(r)uA“’[l+O(u2)] f,M(u,o)=rf,M(-u,~) for U 0 ( 5 . 2 ~ )  

A I Kainr and U M Tirulaer 

with co(r) a function known only numerically and 

(5.26) 

which for r +  1 approaches zero. The degree to which such a sharp singularity is 
reproduced provides a sensitive test for any method of approximation. Substituting 
(5.1) into (3.11), using the symmetry of the &(U), and requiring the coefficients of all 
+.+(U) in this relation to vanish leads to the set of relations 

N-l  

k - I  

S.od!,N’(l-r)+ d$Y’[b:&r(-l) n b n ~ 2 k l ] = S n t ( l + r )  -(NI for O S n < N  (5.3) 

from which the N coefficients d$“, O S  i < N, can be determined. The resultingf?( U, 0) 
for the Klein-Kramers case in N = 25 approximation are shown in figure 4 for r = 0.8, 
together with the exact asymptotic expansion [14], which includes a few correction 
terms in addition to the leading term given in (5.2a). Since the results for large U do 
not differ appreciably from those presented in figure 5(b )  of [14], we present here an 
enlarged view of the neighbourhood of U = 0, with some results obtained by earlier 
methods given for comparison. Also, since the choice of ‘S(0)’ is expected to be critical 
for this very singular distribution function, we present results with two different choices 
for ‘S(0)’. We shall comment on these results after table 4. 

For the BGK case the Milne problem with partial specular reflection can be reduced 
to a singular integral equation [15], for which no explicit solution is yet known to us. 

r=0.8 

-..-__ -._ 

- 2-Str. E6 

..... 2-Str. E3 

--- 2-%hybrid 

’1 1-Streom 

- osymptot.  

0 1  ! I I 1 
-0.3 -0.2 -0.1 0 0.1 0.2 0.3 

Flgure 4. The velocity distribution at the wall for the Milne problem with partial specular 
reflection in the Klein-Kramers case, with reflection coefficient I =0.8, as obtained in the 
N = 50 one-stream approximation, as well as in N = 25 approximation. both with the 
hybrid (2.19) formalism and with the full two-stream method with values IO’ and lo6 for 
‘6(0)’. n e  asymptotic approximation 10 the exact solution for small U is also given. The 
figure shows only the behaviour close to the singularity at v =O; the behaviour for larger 
(U[ is as in figure 5 ( b )  of [14]. 
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Asymptotically for small positive U one obtains 

(5.4) 

with n'(0) the density at the wall, which can only be determined from the full solution. 
In figure 5 we show the N = 25 approximation to the BGK solution for r = 0.5; together 
with the exact expression, as evaluated using the techniques described in [15], and the 
one-stream result. 

r=0.5 

1.5- 

1.0 - 

0.5 

0.0 I I I I 

-2 -1 0 t 2 

Fiaure 5. The velocity distribution at the wall for the Milne problem with panial specular 
reflection in the BOK case for reflection coefficient r = 0.5, as obtained from the one-stream 
N = 50 and the two-stream N = 25 approximation, as well as from the exam solution (exact 
and two-stream results are indistinguishable). 

The extrapolation procedure (4.2) can again be used to obtain accurate values for 
some characteristic quantities. The Milne length xh E d: can thus be determined up 
LV o S ~ ~ I U U G ~ I L L  n?prcs iii LLIC N C I I I - - N ~ I ~ L C L ~  WSC a i ~  up LV LU >igrirrrcarrr rigurca u t  

the BGK case. As a numerical test for the quality of the distribution functions we 
calculated the quantity 

.^ 0 -:-_:c ---. c . .I.̂  ",-:_ "_^ ^ ^ ^ ^  .̂.-I ._ I "  ":....:c"-... c :- 

(5 .5)  

with AM, the limiting value offy(-u,O) for uJ0, which vanishes in the exact solution 
for the Klein-Kramers case. The prefactor, which becomes equal to [nM,(0)]-' for 
r +  1 [14], corrects for the fact that the density at the wall itself depends strongly on 
r;  thus iM, is a better measure of the quality of the distribution than AM, itself. The 
results for several r in the Klein-Kramers case are given in table 4. The results obtained 
using the hybrid representation (2.19) are given for comparison. 

From the results in figure 4 and table 4 one sees that the actual distribution function 
is approached in a qualitatively different way in the two versions of the two-stream 
method. In the hybrid method, the deep minimum at U = 0 is not reproduced very well; 
on the other hand, the two limiting values for U + +O depend regularly on N and the 
(4.2) fits indicate an approach to zero. For the more consistent two-stream method the 
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Table 4. The scaled value zMr. defined in (5.51, for the Milne problem with panial specular 
reflection in the Klein-Kramen case for different values of the reflection coefficient r, in 
N = n approximation (2, n). The results obtained from the hybrid formalism based on 
(2.19) are given as ( h ,  n); those obtained from an extrapolation using (4.2) are indicated 
by (h,  m). The tabulated quantity vanishes for the exact solution. Funher conventions are 
as in table 2. 

, (2.2) (2.30) (h,  30) (h ,  m) 

0.0 0.0156 0.0137 0.0827 0.0067 
0.2 0.0193 0.0235 0.1154 0.0114 
0.4 0.0254 0.0417 0.1585 0.0185 
0.6 0.0369 0.0782 0.2159 0.0324 
0.8 0.0675 0.l611 0.2932 0.0799 
0.99 0.3203 0.3784 0.3928 - 

limiting values for small N are much better than for the hybrid method; with increasing 
N, however, the results at U = 0 actually become slightly worse (except for very small 
r), and a fit of type (4.2) is not possible. On the other hand, the behaviour for small 
but finite 101 improves markedly with increasing N. The use of a high value for 'S(0)' 
leads to a lower minimum, as expected, but the results for finite U become worse and 
exhibit an 'overshoot'. 

6. Some albedo problems 

In the albedo problem one studies the boundary layer that develops when particles 
are injected into the gas at the wall with a given velocity distribution g(u), in the 
absence of any current coming in from infinity. Such boundary layers may occur near 
walls that either spontaneously emit particles, as in the case of sublimation or evapor- 
ation of an adsorbed liquid layer, or reflect them inelastically, for example with a 
temperature different from that prevailing in the bulk of the gas. Under the aspect of 
the approximation scheme presented in this paper it is of interest to study how well 
the method works even for input functions that are not represented very well by finite 
sums of half-range Hermite polynomials. For this purpose it suffices to study the class 
of input distributions 

(6.10) g(u) = uo exr;[-puz/2][j+(a, p)]-' 
where the factor ( j + ) - ' ,  given by 

j+(a, p )  = r [ i + ( a i 2 ) ~ ~ - 1 ( p / 2 ) - " / 2  (6.lb) 

ensures that the total injected current is unity. This class of functions includes, for 
a = 0, the important case of thermal injection; moreover the singularity structure for 
this case was studied recently [14,15]. 

For the expansion coefficients g. defined in (3.16) we obtain, separately for even 
and odd n: 

( 6 . 2 ~ )  

(6.26) 
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where #,(a, b, c, x) is a hypergeometric function [22]. For a = 0 the even coefficients 
reduce to 

Some exact results for the albedo problem in the Klein-Kramers case with the form 
(6.1) for g(u) were given in [14]. For the BGK case, this albedo problem can be solved 
in closed form [15]. Of particular interest is the quantity do, which the diNJ in (3.11) 
should approach for N +  m; it is equal to the density n " ( x )  = I  du P"(u, x)  in the limit 
x + m. For this quantity one obtains [ 151 

(6.4) 

For the function Qiuj  an integrai expression simiiar to the expression (4.7aj for x F K  
can be given: the factor fin the numerator of the integrand must be replaced by In( I + U). 

To determine the coefficients df:", as defined in (3.11) and (3.14), we applied the 
prescription (3.16). This gives rise to the set of equations 

where the overlap integrals am" are given in (2.10). The relation (6.5) can also be 
written as 

N-I  N-I 

m=o p = ,  
g , =  x %dm qm = S, ,d$(NJ+ 1 d $ N J b ~ \ ~ ~ ~ .  (6.6) 

Ci-,--+t.- h r v  hi t-.-r-tnrl ..er.ia- aFthn i..R..i+n mnt.ir hqr -m-l lnrt  ~ i n e n v ~ l . . ~  
U L l l b C  L I l r  1. ,. 1 .  II"I.s,PlL" "L1D1Y.l "1 UlL. lllllllllr .L,Y11.A Y"", L l Y l  Y I...Y..*ll *.6L..,U.V* 

of order lo-", we performed a few preliminary tests. For this purpose we took 

&,(U) = J l t + ( U )  g n  = a n k .  (6.7) 

For N s k, (6.6) has the obvious solution qm = Smk, whereas for N 3 k all qm become 
non-zero. Nevertheless, the approximants d$"' depend smoothly on N through N = k, 
in spite of the fact that for N approaching k the qm derived from (6.5) begin to deviate 
significantly from the values ~ 5 ~ ~ .  On the other hand, inserting the values qm = Smk into 
(6.6) did not lead to results significantly different from those obtained by direct use 
of (6.5). 

As a second test we considered the cases a = 0, p = 1 and a = 1, p = 1 in (6.1). For 
the first case, the solution must be a multiple of the equilibrium solution 

J rsf . .  \",-,",-,-*- - . n  I I = . ~ ~ . I , . ( . ~ I  Y O , " ,  df(O.1) = ..&. (5 .8)  

For the second case one concludes from (3.11)-(3.15) 

f"u, x; 1 , 1 )  =2[fM(u, x ) - x + O ( ~ ) + 4 I ( ~ ) l  (6.90) 

d,p(l, 1)=2x,. (6.96) 

These results were indeed recovered; the accuracy obtained for xM by this detour was 
comparable to that of the more direct method presented in section 4. 

In figures 6 and 7 we present the results obtained for the velocity distribution at 
the wall f "(U, 0; 0, p) ,  corresponding to thermal injection at some inverse temperatures 
p (measured in units of the temperature far from the wall, which is unity in our system 
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1.0 - BGK 
a=O.O 

0.5 - 

la1 
0.0 I 

-2 -1 0 1 2 

..-.. 1 -Stream 

-- asymptot.  

1b1 
0.0 

-2 - 1  0 1 2 

Figure 6. ( a )  The velocity at the wall for the albedo problem with thermal injection at 
twice the background temperature (a =0, p = O S  in (6.1)) for the BOK case; we show the 
one-stream N = 50, the two-stream N = 25 approximation and the exact result. ( b )  The 
same quantities as in ( 0 )  for the Klein-Kramen case for 01 = 0, p = 0.6; for negative U. the 
exact asymptotic small-v expansion is shown instead of the exact result. 

of units) in both the BGK and the Klein-Kramers cases in the N = 25 approximation. 
At the input side (U > 0 )  the exact g( u) is also given for comparison. For the Klein- 
Kramers case g(u) is known to be continuous at U = 0; for the BGK case the jump at 
U = 0 is known [ 151. 

As expected from (6.3), the representation of g(u) (equal t o f g  for U > 0 )  becomes 
poor for pSO.5 ;  this is shown in figure 6 ( a ) ,  where one sees that f g  for u < O  is 
nevertheless reproduced remarkably well for the BGK case. For the Klein-Kramers 
casef8 is given rather poorly for p = 0.5 even for negative U (though somewhat better 
than for U > 0), and we present the results for p = 0.6 instead. The spectacular improve- 
ment with respect to the one-stream method is also manifest from the figures. For the 
more benign case p = 2, for which the results are given in figure 7, we do not present 
the one-stream results; instead we combine the BOK and Klein-Kramers results in a 
single figure, to bring out more clearly the marked difference in the velocity distributions 
for the returning particles, in spite of the quite similar values for global quantities like 



A two-stream method for kinetic boundary layers 1871 

a=O --- KK: Z-Strsom 

- K K :  asymptot. 

.... ECK:Z--Strsom 

0.0 I , I 
-1.5 -1 -0.5 0 0.5 1 1.5 

Figure 7. The velocity distributions at the wall for the albedo problem (6.1) with a =O, 
p = 2  for the BOK and Klein-Kramcrs eases: we show the two-stream N =  25 approxima- 
tions as well as the exact asymptotic small-v expansion for the Klein-Kramen ease; the 
exact solution for the BOK case is indistinguishable from the two-stream approximation 
an the scale of the figure. 

n"(0)  and ng(m). To test how well our method functions for non-analytic input 
distributions g(u) we present the solution f 8(u, 0; f, 1) for the Klein-Kramers and BOK 
cases in figure 8. Again, the distribution of returning particles is indistinguishable from 
the exact BGK result, at least in the figure. 

To assess the ultimate numerical precision attainable with our method (without 
going beyond extended precision arithmetic) we present in table 5 for the BGK case 
the rcs??!!s ob?zined fclr the g!cbz! q~!zn?i?ics ng(m) 2nd n"(O) ,  as we!! as for the !imlting 
value f 8(0 - E, 0; a, p )  for several values of a and p .  Note that we obtain reasonable 
results for the global quantities even at n = 0, p = 0.35, where (6.3) indicates a strong 
divergence of the moment expansion for the input distribution. For still lower 8, even 
our method fails, however. The difference in accuracy obtainable for global and local 
quantities becomes especially clear for the BGK case, where two of the listed quantities 

1 .o 

0.5 

0.0 

a=0.5 

- 1  

.... BGK:Z-Stream 

I 
1 2 

Figure 8. The same quantities as in figure 7 for the singular input distribution (6.1) with 
a=0.5, @ = I .  
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Table 5. The densities at the wall, n'(O),  and at infinity, n'(m), as well as the limit 
f ' ( 0 -  6.0) ofthe velocity distribution at the wall, for the albedo problem in the BGK case 
with input distribution g(u) - U =  exp[-pv2/21 for several values of 01 and p, as obtained 
in the N = 2 5  approximation, (2N), by an extrapolation fit, (2m). and from the exact 
analytic solution (ex). Funher conventions are as in table 2. 

0 0.35 

0 0.40 

0 0.50 

0 1 

0 2 

0 5 

0.5 1 

1 1 

3.41503041 
3.413 
3.413 423 80 

3.271 551 57 
3.271 5 
3.271 501 W 

3.053621 16 
3.053 621 
3.053 620 99 

G + ~ x  10W 
J%+ 10P 
J% 
2.110975 36 
2.110975 601 
2.11097560 

1.747 91 8 68 
1.7479197 
1.747 919 69 

2.701 557 88 
2.701 557 610 
2.701 557 60 

2.874 223 61 
2.874 223 3715 
2.874 223 37 

1.892 9057 
1.92 
1.921 I956 

1.979 8654 
1.981 
1.980 7539 

2.088 9274 
2.088 93 
2.088 9285 

J%+2x10-" 
J%+10-" 
G 
3.084 488 3 
3.084 488 51 
3.084 488 5 

4.204 725 9 
4.204 726 
4.204 7269 

2.178 975 6 
2.17897711 
2.178 977 4 

2 + 3 x 

2 
- 

~ 

0.252 427 
0.8 
0.766 446 

0.776 160 
0.79 
0.790 206 

0.835 198 
0.83 
0.833 361 

1 - 10-10 
- 
1 

1.226 222 
1.230 5 
1.230 532 

1.658780 
1.678 
1.677 443 

0.873 473 
0.869 3 
0.869 286 

0.802 267 
0.797 88 
0.797 884 

are linked by the relation 

f " ( o - e , x ) =  n g ( x ) / &  (6.10) 

which follows from the structure of the BOK collision operator [15]. We do not present 
comparable data for the Klein-Kramers case, since there the exact result cannot be 
evaluated to the precision required, except for p = 1, n = 0 or 1, where a closed form 
solution is available as discussed earlier in connection with (6.8)-(6.9). For the latter 
cases accuracies comparable to the BGK case are obtained. 

7. Concluding remarks 

The results obtained in this paper fully confirm the conjecture by Gross er 01 [161 and 
by Razi Naqvi er al [17] that an expansion in half-range functions of the velocity 
yields better numerical results for boundary value problems than expansions in full- 
range functions, which at first sight appear safer mathematically. Moreover, a persistent 
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use of half-range representations throughout the formalism yields results superior to 
those of the less adventurous mixed formalism based on (2.19), which is closer in spirit 
to the treatment in [17 ] .  As is clear from the comparison with exact results, neither 
the use of a basis that becomes overcomplete in the limit N+m, nor the occurrence 
of formally infinite matrix elements in the Klein-Kramers case has adverse effects, 
though they compel us to use extended precision arithmetic. 

The method developed in this paper is in no way restricted to the two special 
collision operators considered; it can be applied to any linear semidefinite operator 
%. Also, as mentioned before, it can be applied to the Laplace transform of a time- 
dependent linear kinetic equation. When the eigenvalue zero is degenerate, the number 
of Chapman-Enskog solutions also increases, as extensively discussed elsewhere 
[23,24] .  In actual physical systems, it does not usually suffice to consider only one 
velocity variable, even when considering a half-space x > 0 and situations in which 
the boundary conditions, and hence the solution, do not depend on the variables y 
and z. For the two collision operators considered, all eigenfunctions of % can be 
written in the form [I21 

where L.,(c) is the Ith Laguerre polynomial. We may then expand the solution and the 
boundary conditions in terms of the L, and then obtain separate boundary value 
problems for each I, which can be treated with the methods developed in this paper. 
For more general collision operators, an expansion in terms of the half-space Burnett 
functions 

with $flk the ordinary Burnett functions [XI,  may be more convenient, since collision 
operators derived from centrally symmetric interactions do not couple Jinx with different 
k We tested our scheme for expansions in the functions (7.2) as well, and obtained 
identical results for the sequence of truncations S,, in which the coefficients of all 
&x, with 2n + k N are put equal to zero. Truncations with n + k < N [24] give results 
of siigntiy iesser quaiity. 

A generalization to problems with spherical or cylindrical symmetry is considerably 
less straightforward, since the radial velocity, unlike the component of the velocity 
perpendicular to a plane wall, is not a constant of the motion during the free flow. 
For not too small R, however, an expansion of the solution in powers of R-' [26] 
reduces the spherically symmetric problem to a sequence of planar problems, with the 
solution of the problem in order k serving as input function for an albedo problem in 
order k + l .  In view of the high accuracy obtainable with the present method, it may 
be possible to obtain reliable results for several orders in R-' ,  and hence to study the 
convergence of the expansion and to estimate the range of R-values for which it can 
yield reliable results. 
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